Human papillomavirus type 16 pseudovirions with few point mutations in L1 major capsid protein FG loop could escape actual or future vaccination for potential use in gene therapy.
نویسندگان
چکیده
HPV prophylactic vaccination based on VLPs was implemented 7 years ago and has now shown a high degree of efficiency to reduce HPV-induced lesions. Moreover, it was shown that HPV-derived virus-like particles or pseudovirions could be used as gene therapy vectors. As a consequence, characterization of the antigenic structure of HPV capsids is crucial for designing future HPV vaccines with better or broader efficacy and for the design of HPV-derived gene therapy vectors with reduced immunogenicity or vaccination escaping. In this study, we have generated 10 HPV16 FG loop L1 protein mutants and analyzed their ability to self-assemble into VLP, their immunogenicity, and their ability to transduce cells when used as pseudovirions. Most of the mutants had lost their ability to transduce cells at the exception of two chimeric HPV16/31 L1 protein FG loop mutants. Sera from mice immunized with HPV16 L1 wt VLPs very weakly neutralized pseudovirions derived from these two HPV16/31 L1 protein FG loop mutants. These findings suggest that only a few point substitutions within the FG loop are sufficient to generate a new serotype escaping vaccination. As a consequence, derived pseudovirions might be suitable as gene therapy vectors in vaccinated subjects.
منابع مشابه
Human papillomavirus genotype 16 pseudovirus production and purification in HEK-293FT cells
Introduction: Human papillomavirus (HPV) is the main causative agent of cervical cancer worldwide leading to a big health problem, especially in the developing countries. Among 14 common high-risk genotypes, HPV16 accounts for more than 50% of all cervical cancers. The current prophylactic vaccines against HPV infection are based on L1 protein. Due to some drawbacks in the current vaccines such...
متن کاملThe DE and FG loops of the HPV major capsid protein contribute to the epitopes of vaccine-induced cross-neutralising antibodies
The human papillomavirus (HPV) vaccines consist of major capsid protein (L1) virus-like particles (VLP) and are highly efficacious against the development of cervical cancer precursors attributable to oncogenic genotypes, HPV16 and HPV18. A degree of vaccine-induced cross-protection has also been demonstrated against genetically-related genotypes in the Alpha-7 (HPV18-like) and Alpha-9 (HPV16-l...
متن کاملConstruction and evaluation of human papillomavirus genotype 18 pseudovirions
Introduction: Cervical cancer is the second most common cancer in women worldwide and the role of human papillomavirus (HPV) has been proved in its etiology. The currentley available L1-capsid-protein-based vaccine is highly immunogenic and very high titers of serum antibodies can be obtained by its injection, but unfortunately it is restricted to only a few HPV genotypes and is relatively expe...
متن کاملHuman Papillomavirus Type16- L1 VLP Production in Insect Cells
Objective(s): Infection by high-risk papillomavirus is regarded as the major risk factor in the development of cervical cancer. Recombinant DNA technology allows expression of the L1 major capsid protein of HPV in different expression systems, which has intrinsic capacity to self-assemble into viral-like particles (VLP). VLPS are non-infectious, highly immunogenic and can elicit neutralizing...
متن کاملIdentification of a human papillomavirus type 16-specific epitope on the C-terminal arm of the major capsid protein L1.
To characterize epitopes on human papillomavirus (HPV) virus-like particles (VLPs), a panel of mutated HPV-16 VLPs was created. Each mutated VLP had residues substituted from HPV-31 or HPV-52 L1 sequences to the HPV-16 L1 backbone. Mutations were created on the HPV-31 and -52 L1 proteins to determine if HPV-16 type-specific recognition could be transferred. Correct folding of the mutated protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biotechnology
دوره 56 5 شماره
صفحات -
تاریخ انتشار 2014